Перевод: с русского на английский

с английского на русский

качество электроэнергии

  • 1 качество электроэнергии

    1. quality of power
    2. quality of electric energy
    3. QP
    4. power quality

     

    качество электроэнергии

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > качество электроэнергии

  • 2 качество электроэнергии

    Универсальный русско-английский словарь > качество электроэнергии

  • 3 качество электроэнергии

    Russian-English dictionary of telecommunications > качество электроэнергии

  • 4 качество электроэнергии

    Русско-английский политехнический словарь > качество электроэнергии

  • 5 качество электроэнергии

    Русско-английский словарь по электроэнергетике > качество электроэнергии

  • 6 качество электрической энергии

    1. Versorgungs qualität
    2. quality of the electricity supply
    3. quality of supply
    4. QP
    5. power quality

     

    качество электрической энергии
    Степень соответствия параметров электрической энергии их установленным значениям.
    [ ГОСТ 23875-88]

    качество электрической энергии
    КЭ

    Степень соответствия характеристик электрической энергии в данной точке электрической системы совокупности нормированных показателей КЭ.
    Примечание. Показатели КЭ в некоторых случаях определяют электромагнитную совместимость электрической сети при передаче электрической энергии и приемников электрической энергии, подключенных к данной сети.
    [ ГОСТ Р 51317.4.30-2008 (МЭК 61000-4-30:2008)]

    качество электроэнергии

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    EN

    power quality
    characteristics of the electric current, voltage and frequencies at a given point in an electric power system, evaluated against a set of reference technical parameters
    NOTE – These parameters might, in some cases, relate to the compatibility between electricity supplied in an electric power system and the loads connected to that electric power system.
    [IEV number 617-01-05]

    quality of the electricity supply
    collective effect of all aspects of performance in the supply of electricity
    NOTE – The quality of the electricity supply includes security of electricity supply as a prerequisite, reliability of the electric power system, power quality and customer relationships.
    [IEV number 617-01-07]

    power quality
    characteristics of the electricity at a given point on an electrical system, evaluated against a set of reference technical parameters
    NOTE These parameters might, in some cases, relate to the compatibility between electricity supplied on a network and the loads connected to that network.
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    FR

    qualité de la tension
    caractéristiques du courant, de la tension électrique et de la fréquence en un point donné d’un système d’énergie électrique évaluée selon un ensemble de paramètres techniques de référence
    NOTE – Ces paramètres pourraient, dans certains cas, se rapporter à la compatibilité entre l’électricité fournie sur un réseau d’énergie électrique et les charges raccordées à ce réseau d’énergie électrique.
    [IEV number 617-01-05]

    qualité de la fourniture d’électricité
    effet d’ensemble de tous les aspects de performance dans la fourniture d’électricité
    NOTE – La qualité de la fourniture d’électricité comprend la sécurité de la fourniture d’électricité en tant que préalable, la fiabilité du réseau d’ énergie électrique, la qualité de la tension et les relations clientèle.
    [IEV number 617-01-07]

    qualité de l’alimentation
    caractéristiques de l’électricité en un point donné d’un réseau d’énergie électrique, évaluée par rapport à un ensemble de paramètres techniques de référence
    NOTE Ces paramètres peuvent, dans certains cas, tenir compte de la compatibilité entre l’électricité fournie par un réseau et les charges connectées à ce réseau.
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    Качество электрической энергии (КЭ) определяется совокупностью ее характеристик, при которых электроприемники (ЭП) могут нормально работать и выполнять заложенные в них функции.
    КЭ на месте производства не гарантирует ее качества на месте потребления. КЭ до и после включения ЭП в точке его присоединения к электрической сети может быть различно. КЭ характеризуют также термином “электромагнитная совместимость”. Под электромагнитной совместимостью понимают способность ЭП нормально функционировать в его электромагнитной среде (в электрической сети, к которой он присоединен), не создавая недопустимых электромагнитных помех для других ЭП, функционирующих в той же среде.

    [В. В. Суднова. Качество электрической энергии]
     

    Параллельные тексты EN-RU

    Online technology fully isolates and protects against all power quality disturbances.
    [APC]

    Технология ИБП с двойным преобразованием энергии полностью изолирует и защищает нагрузку от любых нарушений качества электроэнергии.
    [Перевод Интент]


     


    Тематики

    Близкие понятия

    Действия

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Смотри также

    1. Качество электрической энергии

    D. Versorgungsqualität

    E. Quality of supply

    F. Qualité du service

    Степень соответствия параметров электрической энергии их установленным значениям

    Источник: ГОСТ 23875-88: Качество электрической энергии. Термины и определения оригинал документа

    3.20 качество электрической энергии (power quality) КЭ: Степень соответствия характеристик электрической энергии в данной точке электрической системы совокупности нормированных показателей КЭ.

    Примечание - Показатели КЭ в некоторых случаях определяют электромагнитную совместимость электрической сети при передаче электрической энергии и приемников электрической энергии, подключенных к данной сети.

    Источник: ГОСТ Р 51317.4.30-2008: Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии оригинал документа

    Русско-английский словарь нормативно-технической терминологии > качество электрической энергии

  • 7 нарушение качества электроэнергии

    Русско-английский словарь нормативно-технической терминологии > нарушение качества электроэнергии

  • 8 показатель качества электроэнергии

    Русско-английский словарь нормативно-технической терминологии > показатель качества электроэнергии

  • 9 аварийный режим работы (системы [установки] питания аппаратуры железнодорожной электросвязи)

    1. emergency operation mode (of a railway telecommunication equipment power supply system [installation])

     

    аварийный режим работы (системы [установки] питания аппаратуры железнодорожной электросвязи)
    Режим работы, при котором качество электроэнергии на выходных выводах системы [установки] питания не соответствует установленным нормам.
    [ ГОСТ Р 53953-2010]

    Тематики

    EN

    • emergency operation mode (of a railway telecommunication equipment power supply system [installation])

    Русско-английский словарь нормативно-технической терминологии > аварийный режим работы (системы [установки] питания аппаратуры железнодорожной электросвязи)

  • 10 нормальный режим работы (системы [установки] питания аппаратуры железнодорожной электросвязи)

    1. normal operation mode (of a railway telecommunication equipment power supply system [installation])

     

    нормальный режим работы (системы [установки] питания аппаратуры железнодорожной электросвязи)
    Режим работы, при котором электроснабжение системы [установки] питания осуществляется от основного источника, электрические характеристики входящих в систему [установку] устройств и качество электроэнергии на входных и выходных выводах системы [установки] питания соответствуют установленным нормам.
    [ ГОСТ Р 53953-2010]

    Тематики

    EN

    • normal operation mode (of a railway telecommunication equipment power supply system [installation])

    Русско-английский словарь нормативно-технической терминологии > нормальный режим работы (системы [установки] питания аппаратуры железнодорожной электросвязи)

  • 11 послеаварийный режим работы (системы [установки] питания аппаратуры железнодорожной электросвязи)

    1. post-emergency operation mode (of a railway telecommunication equipment power supply system [installation])

     

    послеаварийный режим работы (системы [установки] питания аппаратуры железнодорожной электросвязи)
    Режим работы, при котором электроэнергия в систему [установку] питания подается от основного или резервного источника электроснабжения, электрические характеристики входящих в систему [установку] питания устройств и качество электроэнергии на входных и выходных выводах системы [установки] питания соответствуют установленным нормам и одновременно осуществляется автоматический послеаварийный заряд аккумуляторных батарей.
    [ ГОСТ Р 53953-2010]

    Тематики

    EN

    • post-emergency operation mode (of a railway telecommunication equipment power supply system [installation])

    Русско-английский словарь нормативно-технической терминологии > послеаварийный режим работы (системы [установки] питания аппаратуры железнодорожной электросвязи)

  • 12 электрическая энергия

    1. Elektrische Energie
    2. electrical power
    3. electric power
    4. electric energy

     

    электроэнергия
    Широко распространенный термин, используемый для определения количества энергии, отдаваемой электростанцией в электрическую сеть или получаемой из сети потребителем. Единица измерения - кВт.ч.
    [ Большой энциклопедический словарь]

     

    Электрическая энергия как товар используется во всех сферах жизнедеятельности человека, обладает совокупностью специфических свойств и непосредственно участвует при создании других видов продукции, влияя на их качество.

    Электрическая энергия производится, передается, распределяется и потребляется в основном на переменном токе.

    Тематики

    Действия

    Синонимы

    Сопутствующие термины

    EN

    Смотри также

    Русско-английский словарь нормативно-технической терминологии > электрическая энергия

  • 13 ИБП для централизованных систем питания

    1. centralized UPS

     

    ИБП для централизованных систем питания
    ИБП для централизованного питания нагрузок
    -
    [Интент]

    ИБП для централизованных систем питания

    А. П. Майоров

    Для многих предприятий всесторонняя защита данных имеет жизненно важное значение. Кроме того, есть виды деятельности, в которых прерывания подачи электроэнергии не допускаются даже на доли секунды. Так работают расчетные центры банков, больницы, аэропорты, центры обмена трафиком между различными сетями. В такой же степени критичны к электропитанию телекоммуникационное оборудование, крупные узлы Интернет, число ежедневных обращений к которым исчисляется десятками и сотнями тысяч. Третья часть обзора по ИБП посвящена оборудованию, предназначенному для обеспечения питания особо важных объектов.

    Централизованные системы бесперебойного питания применяют в тех случаях, когда прерывание подачи электроэнергии недопустимо для работы большинства единиц оборудования, составляющих одну информационную или технологическую систему. Как правило, проблемы питания рассматривают в рамках единого проекта наряду со многими другими подсистемами здания, поскольку они требуют вложения значительных средств и увязки с силовой электропроводкой, коммутационным электрооборудованием и аппаратурой кондиционирования. Изначально системы бесперебойного питания рассчитаны на долгие годы эксплуатации, их срок службы можно сравнить со сроком службы кабельных подсистем здания и основного компьютерного оборудования. За 15—20 лет функционирования предприятия оснащение его рабочих станций обновляется три-четыре раза, несколько раз изменяется планировка помещений и производится их ремонт, но все эти годы система бесперебойного питания должна работать безотказно. Для ИБП такого класса долговечность превыше всего, поэтому в их технических спецификациях часто приводят значение важнейшего технического показателя надежности — среднего времени наработки на отказ (Mean Time Before Failure — MTBF). Во многих моделях с ИБП оно превышает 100 тыс. ч, в некоторых из них достигает 250 тыс. ч (т. е. 27 лет непрерывной работы). Правда, сравнивая различные системы, нужно учитывать условия, для которых этот показатель задан, и к предоставленным цифрам относиться осторожно, поскольку условия работы оборудования разных производителей неодинаковы.

    Батареи аккумуляторов

    К сожалению, наиболее дорогостоящий компонент ИБП — батарея аккумуляторов так долго работать не может. Существует несколько градаций качества батарей, которые различаются сроком службы и, естественно, ценой. В соответствии с принятой два года назад конвенцией EUROBAT по среднему сроку службы батареи разделены на четыре группы:

    10+ — высоконадежные,
    10 — высокоэффективные,
    5—8 — общего назначения,
    3—5 — стандартные коммерческие.

    Учитывая исключительно жесткую конкуренцию на рынке ИБП малой мощности, производители стремятся снизить до минимума начальную стоимость своих моделей, поэтому часто комплектуют их самыми простыми батареями. Применительно к этой группе продуктов такой подход оправдан, поскольку упрощенные ИБП изымают из обращения вместе с защищаемыми ими персональными компьютерами. Впервые вступающие на этот рынок производители, пытаясь оттеснить конкурентов, часто используют в своих интересах неосведомленность покупателей о проблеме качества батарей и предлагают им сравнимые по остальным показателям модели за более низкую цену. Имеются случаи, когда партнеры крупной фирмы комплектуют ее проверенные временем и признанные рынком модели ИБП батареями, произведенными в развивающихся странах, где контроль за технологическим процессом ослаблен, а, значит, срок службы батарей меньше по сравнению с "кондиционными" изделиями. Поэтому, подбирая для себя ИБП, обязательно поинтересуйтесь качеством батареи и ее производителем, избегайте продукции неизвестных фирм. Следование этим рекомендациям сэкономит вам значительные средства при эксплуатации ИБП.

    Все сказанное еще в большей степени относится к ИБП высокой мощности. Как уже отмечалось, срок службы таких систем исчисляется многими годами. И все же за это время приходится несколько раз заменять батареи. Как это ни покажется странным, но расчеты, основанные на ценовых и качественных параметрах батарей, показывают, что в долгосрочной перспективе наиболее выгодны именно батареи высшего качества, несмотря на их первоначальную стоимость. Поэтому, имея возможность выбора, устанавливайте батареи только "высшей пробы". Гарантированный срок службы таких батарей приближается к 15 годам.

    Не менее важный аспект долговечности мощных систем бесперебойного питания — условия эксплуатации аккумуляторных батарей. Чтобы исключить непредсказуемые, а следовательно, часто приводящие к аварии перерывы в подаче электропитания, абсолютно все включенные в приведенную в статье таблицу модели оснащены самыми совершенными схемами контроля за состоянием батарей. Не мешая выполнению основной функции ИБП, схемы мониторинга, как правило, контролируют следующие параметры батареи: зарядный и разрядный токи, возможность избыточного заряда, рабочую температуру, емкость.

    Кроме того, с их помощью рассчитываются такие переменные, как реальное время автономной работы, конечное напряжение зарядки в зависимости от реальной температуры внутри батареи и др.

    Подзарядка батареи происходит по мере необходимости и в наиболее оптимальном режиме для ее текущего состояния. Когда емкость батареи снижается ниже допустимого предела, система контроля автоматически посылает предупреждающий сигнал о необходимости ее скорой замены.

    Топологические изыски

    Долгое время специалисты по системам электропитания руководствовались аксиомой, что мощные системы бесперебойного питания должны иметь топологию on-line. Считается, что именно такая топология гарантирует защиту от всех нарушений на линиях силового питания, позволяет фильтровать помехи во всем частотном диапазоне, обеспечивает на выходе чистое синусоидальное напряжение с номинальными параметрами. Однако за качество электропитания приходится платить повышенным выделением тепловой энергии, сложностью электронных схем, а следовательно, потенциальным снижением надежности. Но, несмотря на это, за многолетнюю историю выпуска мощных ИБП были разработаны исключительно надежные аппараты, способные работать в самых невероятных условиях, когда возможен отказ одного или даже нескольких узлов одновременно. Наиболее важным и полезным элементом мощных ИБП является так называемый байпас. Это обходной путь подачи энергии на выход в случае ремонтных и профилактических работ, вызванных отказом некоторых компонентов систем или возникновением перегрузки на выходе. Байпасы бывают ручными и автоматическими. Они формируются несколькими переключателями, поэтому для их активизации требуется некоторое время, которое инженеры постарались снизить до минимума. И раз уж такой переключатель был создан, то почему бы не использовать его для снижения тепловыделения в то время, когда питающая сеть пребывает в нормальном рабочем состоянии. Так появились первые признаки отступления от "истинного" режима on-line.

    Новая топология отдаленно напоминает линейно-интерактивную. Устанавливаемый пользователем системы порог срабатывания определяет момент перехода системы в так называемый экономный режим. При этом напряжение из первичной сети поступает на выход системы через байпас, однако электронная схема постоянно следит за состоянием первичной сети и в случае недопустимых отклонений мгновенно переключается на работу в основном режиме on-line.

    Подобная схема применена в ИБП серии Synthesis фирмы Chloride (Сети и системы связи, 1996. № 10. С. 131), механизм переключения в этих устройствах назван "интеллектуальным" ключом. Если качество входной линии укладывается в пределы, определяемые самим пользователем системы, аппарат работает в линейно-интерактивном режиме. При достижении одним из контролируемых параметров граничного значения система начинает работать в нормальном режиме on-line. Конечно, в этом режиме система может работать и постоянно.

    За время эксплуатации системы отход от исходной аксиомы позволяет экономить весьма значительные средства за счет сокращения тепловыделения. Сумма экономии оказывается сопоставимой со стоимостью оборудования.

    Надо отметить, что от своих исходных принципов отошла еще одна фирма, ранее выпускавшая только линейно-интерактивные ИБП и ИБП типа off-line сравнительно небольшой мощности. Теперь она превысила прежний верхний предел мощности своих ИБП (5 кВА) и построила новую систему по топологии on-line. Я имею в виду фирму АРС и ее массив электропитания Simmetra (Сети и системы связи. 1997. № 4. С. 132). Создатели попытались заложить в систему питания те же принципы повышения надежности, которые применяют при построении особо надежной компьютерной техники. В модульную конструкцию введена избыточность по отношению к управляющим модулям и батареям. В любом из трех выпускаемых шасси из отдельных модулей можно сформировать нужную на текущий момент систему и в будущем наращивать ее по мере надобности. Суммарная мощность самого большого шасси достигает 16 кВА. Еще рано сравнивать эту только что появившуюся систему с другими включенными в таблицу. Однако факт появления нового продукта в этом исключительно устоявшемся секторе рынка сам по себе интересен.

    Архитектура

    Суммарная выходная мощность централизованных систем бесперебойного питания может составлять от 10—20 кВА до 200—300 МВА и более. Соответственно видоизменяется и структура систем. Как правило, она включают в себя несколько источников, соединенных параллельно тем или иным способом. Аппаратные шкафы устанавливают в специально оборудованных помещениях, где уже находятся распределительные шкафы выходного напряжения и куда подводят мощные входные силовые линии электропитания. В аппаратных помещениях поддерживается определенная температура, а за функционированием оборудования наблюдают специалисты.

    Многие реализации системы питания для достижения необходимой надежности требуют совместной работы нескольких ИБП. Существует ряд конфигураций, где работают сразу несколько блоков. В одних случаях блоки можно добавлять постепенно, по мере необходимости, а в других — системы приходится комплектовать в самом начале проекта.

    Для повышения суммарной выходной мощности используют два варианта объединения систем: распределенный и централизованный. Последний обеспечивает более высокую надежность, но первый более универсален. Блоки серии EDP-90 фирмы Chloride допускают объединение двумя способами: и просто параллельно (распределенный вариант), и с помощью общего распределительного блока (централизованный вариант). При выборе способа объединения отдельных ИБП необходим тщательный анализ структуры нагрузки, и в этом случае лучше всего обратиться за помощью к специалистам.

    Применяют параллельное соединение блоков с централизованным байпасом, которое используют для повышения общей надежности или увеличения общей выходной мощности. Число объединяемых блоков не должно превышать шести. Существуют и более сложные схемы с избыточностью. Так, например, чтобы исключить прерывание подачи питания во время профилактических и ремонтных работ, соединяют параллельно несколько блоков с подключенными к отдельному ИБП входными линиями байпасов.

    Особо следует отметить сверхмощные ИБП серии 3000 фирмы Exide. Суммарная мощность системы питания, построенная на модульных элементах этой серии, может достигать нескольких миллионов вольт-ампер, что сравнимо с номинальной мощностью генераторов некоторых электростанций. Все компоненты серии 3000 без исключения построены на модульном принципе. На их основе можно создать особо мощные системы питания, в точности соответствующие исходным требованиям. В процессе эксплуатации суммарную мощность систем можно наращивать по мере увеличения нагрузки. Однако следует признать, что систем бесперебойного питания такой мощности в мире не так уж много, их строят по специальным контрактам. Поэтому серия 3000 не включена в общую таблицу. Более подробные данные о ней можно получить на Web-узле фирмы Exide по адресу http://www.exide.com или в ее московском представительстве.

    Важнейшие параметры

    Для систем с высокой выходной мощностью очень важны показатели, которые для менее мощных систем не имеют первостепенного значения. Это, например, КПД — коэффициент полезного действия (выражается либо действительным числом меньше единицы, либо в процентах), показывающий, какая часть активной входной мощности поступает к нагрузке. Разница значений входной и выходной мощности рассеивается в виде тепла. Чем выше КПД, тем меньше тепловой энергии выделяется в аппаратной комнате и, значит, для поддержания нормальных рабочих условий требуется менее мощная система кондиционирования.

    Чтобы представить себе, о каких величинах идет речь, рассчитаем мощность, "распыляемую" ИБП с номинальным значением на выходе 8 МВт и с КПД, равным 95%. Такая система будет потреблять от первичной силовой сети 8,421 МВт — следовательно, превращать в тепло 0,421 МВт или 421 кВт. При повышении КПД до 98% при той же выходной мощности рассеиванию подлежат "всего" 163 кВт. Напомним, что в данном случае нужно оперировать активными мощностями, измеряемыми в ваттах.

    Задача поставщиков электроэнергии — подавать требуемую мощность ее потребителям наиболее экономным способом. Как правило, в цепях переменного тока максимальные значения напряжения и силы тока из-за особенностей нагрузки не совпадают. Из-за этого смещения по фазе снижается эффективность доставки электроэнергии, поскольку при передаче заданной мощности по линиям электропередач, через трансформаторы и прочие элементы систем протекают токи большей силы, чем в случае отсутствия такого смещения. Это приводит к огромным дополнительным потерям энергии, возникающим по пути ее следования. Степень сдвига по фазе измеряется не менее важным, чем КПД, параметром систем питания — коэффициентом мощности.

    Во многих странах мира существуют нормы на допустимое значение коэффициента мощности систем питания и тарифы за электроэнергию нередко зависят от коэффициента мощности потребителя. Суммы штрафов за нарушение нормы оказываются настольно внушительными, что приходится заботиться о повышении коэффициента мощности. С этой целью в ИБП встраивают схемы, которые компенсируют сдвиг по фазе и приближают значение коэффициента мощности к единице.

    На распределительную силовую сеть отрицательно влияют и нелинейные искажения, возникающие на входе блоков ИБП. Почти всегда их подавляют с помощью фильтров. Однако стандартные фильтры, как правило, уменьшают искажения только до уровня 20—30%. Для более значительного подавления искажений на входе систем ставят дополнительные фильтры, которые, помимо снижения величины искажений до нескольких процентов, повышают коэффициент мощности до 0,9—0,95. С 1998 г. встраивание средств компенсации сдвига по фазе во все источники электропитания компьютерной техники в Европе становится обязательным.

    Еще один важный параметр мощных систем питания — уровень шума, создаваемый такими компонентами ИБП, как, например, трансформаторы и вентиляторы, поскольку их часто размещают вместе в одном помещении с другим оборудованием — там где работает и персонал.

    Чтобы представить себе, о каких значениях интенсивности шума идет речь, приведем для сравнения такие примеры: уровень шума, производимый шелестом листвы и щебетанием птиц, равен 40 дБ, уровень шума на центральной улице большого города может достигать 80 дБ, а взлетающий реактивный самолет создает шум около 100 дБ.

    Достижения в электронике

    Мощные системы бесперебойного электропитания выпускаются уже более 30 лет. За это время бесполезное тепловыделение, объем и масса их сократились в несколько раз. Во всех подсистемах произошли и значительные технологические изменения. Если раньше в инверторах использовались ртутные выпрямители, а затем кремниевые тиристоры и биполярные транзисторы, то теперь в них применяются высокоскоростные мощные биполярные транзисторы с изолированным затвором (IGBT). В управляющих блоках аналоговые схемы на дискретных компонентах сначала были заменены на цифровые микросхемы малой степени интеграции, затем — микропроцессорами, а теперь в них установлены цифровые сигнальные процессоры (Digital Signal Processor — DSP).

    В системах питания 60-х годов для индикации их состояния использовались многочисленные аналоговые измерительные приборы. Позднее их заменили более надежными и информативными цифровыми панелями из светоизлучающих диодов и жидкокристаллических индикаторов. В наше время повсеместно используют программное управление системами питания.

    Еще большее сокращение тепловых потерь и общей массы ИБП дает замена массивных трансформаторов, работающих на частоте промышленной сети (50 или 60 Гц), высокочастотными трансформаторами, работающими на ультразвуковых частотах. Между прочим, высокочастотные трансформаторы давно применяются во внутренних источниках питания компьютеров, а вот в ИБП их стали устанавливать сравнительно недавно. Применение IGBT-приборов позволяет строить и бестрансформаторные инверторы, при этом внутреннее построение ИБП существенно меняется. Два последних усовершенствования применены в ИБП серии Synthesis фирмы Chloride, отличающихся уменьшенным объемом и массой.

    Поскольку электронная начинка ИБП становится все сложнее, значительную долю их внутреннего объема теперь занимают процессорные платы. Для радикального уменьшения суммарной площади плат и изоляции их от вредных воздействий электромагнитных полей и теплового излучения используют электронные компоненты для так называемой технологии поверхностного монтажа (Surface Mounted Devices — SMD) — той самой, которую давно применяют в производстве компьютеров. Для защиты электронных и электротехнических компонентов имеются специальные внутренние экраны.

    ***

    Со временем серьезный системный подход к проектированию материальной базы предприятия дает значительную экономию не только благодаря увеличению срока службы всех компонентов "интегрированного интеллектуального" здания, но и за счет сокращения расходов на электроэнергию и текущее обслуживание. Использование централизованных систем бесперебойного питания в пересчете на стоимость одного рабочего места дешевле, чем использование маломощных ИБП для рабочих станций и даже ИБП для серверных комнат. Однако, чтобы оценить это, нужно учесть все факторы установки таких систем.

    Предположим, что предприятие свое помещение арендует. Тогда нет никакого смысла разворачивать дорогостоящую систему централизованного питания. Если через пять лет руководство предприятия не намерено заниматься тем же, чем занимается сегодня, то даже ИБП для серверных комнат обзаводиться нецелесообразно. Но если оно рассчитывает на то, что производство будет держаться на плаву долгие годы и решило оснастить принадлежащее им здание системой бесперебойного питания, то для выбора такой системы нужно воспользоваться услугами специализированных фирм. Сейчас их немало и в России. От этих же фирм можно получить информацию о так называемых системах гарантированного электропитания, в которые включены дизельные электрогенераторы и прочие, более экзотические источники энергии.

    Нам же осталось рассмотреть лишь методы управления ИБП, что мы и сделаем в одном из следующих номеров нашего журнала

    [ http://www.ccc.ru/magazine/depot/97_07/read.html?0502.htm]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > ИБП для централизованных систем питания

  • 14 компенсация реактивной мощности

    1. reactive power compensation
    2. reactive energy management
    3. power factor compensation
    4. management of reactive energy
    5. energy compensation

     

    компенсация реактивной мощности
    -

    EN

    reactive power compensation
    an action to optimize the transmission of reactive power in the network as a whole
    [МЭС 603-04-28]

    FR

    compensation de l'énergie réactive
    action dont le but est d'optimiser globalement le transport d'énergie réactive dans le réseau
    [МЭС 603-04-28]

    Параллельные тексты EN-RU

    Reactive energy management

    In electrical networks, reactive energy results in increased line currents for a given active energy transmitted to loads.
    The main consequences are:
    • Need for oversizing of transmission and distribution networks by utilities,
    • Increased voltage drops and sags along the distribution lines,
    • Additional power losses.
    This results in increased electricity bills for industrial customers because of:

    • Penalties applied by most utilities on reactive energy,
    • Increased overall kVA demand,
    • Increased energy consumption within the installations.

    Reactive energy management aims to optimize your electrical installation by reducing energy consumption, and to improve power availability.
    Total CO2 emissions are also reduced.
    Utility power bills are typically reduced by 5 % to 10 %.


    [Schneider Electric]

    Компенсация реактивной мощности

    Передача по электрической сети реактивной энергии приводит к увеличению линейных токов (по сравнению токами, протекающими при передаче нагрузкам только активной энергии).
    Основные последствия этого явления:
    ● необходимость увеличения сечения проводников в сетях передачи и распределения электроэнергии;
    ● повышенное падение и провалы напряжения в распределительных линиях;
    ● дополнительные потери электроэнергии;
    Для промышленных потребителей такие потери приводят к возрастанию расходов на оплату электроэнергии, что вызвано:

    ● штрафами, накладываемыми поставщиками электроэнергии за избыточную реактивную мощность;
    ● увеличением потребления полной мощности (измеряемой в кВА);
    ● повышенным энергопотреблением электроустановок.

    Цель компенсации реактивной мощности (КРМ) – оптимизация работы электроустановки за счет сокращения потребления энергии и увеличения надежности электроснабжения. Кроме того, КРМ позволяет уменьшить выбросы CO2 и сократить расходы на электроэнергию в среднем на 5-10 %.

    [Перевод Интент]

    Наиболее эффективным способом снижения потребляемой из сети реактивной мощности является применение установок компенсации реактивной мощности (конденсаторных установок).
    Использование конденсаторных установок позволяет:

    • разгрузить питающие линии электропередачи, трансформаторы и распределительные устройства;
    • снизить расходы на оплату электроэнергии;
    • при использовании определенного типа установок снизить уровень высших гармоник;
    • подавить сетевые помехи, снизить несимметрию фаз;
    • увеличить надежность и экономичность распределительных сетей.

    На практике коэффициент мощности после компенсации находится в пределах от 0,93 до 0,99.
    Наибольший экономический эффект достигается при размещении компенсирующих устройств вблизи электроприемников, потребляющих реактивную мощность.
    Различают следующие виды компенсации:


    Для ламп типа ДРЛ, ДРИ, ДРИЗ, ДНаТ может применяться как групповая, так и индивидуальная компенсация реактивной мощности
    [ПУЭ]

    Тематики

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > компенсация реактивной мощности

  • 15 выработка

    2) Geology: conduit, goaf, pit, workings
    3) Naval: forming
    5) Engineering: capacity, depletion (запасов), development, exhaustion, generation, manufacturing, mine roadway, mining, opening, output (объём продукции), outturn, productive capacity, wear (износ), wear cavity, wear groove, wearing (износ), yield, rendement
    6) Construction: borrow pit, (подземная) underground, working space underground (тоннеля)
    7) Law: working out
    10) Architecture: excavation
    11) Mining: course, entry (горизонтальная), groove (горная), heading, passage, roadway (откаточная), roadway, roadway entry, working
    12) Diplomatic term: elaboration (плана, проекта)
    13) Forestry: turnout
    15) Physiology: elaboration (веществ, необходимых для роста и питания)
    16) Oil: key seat
    17) Biochemistry: pathway (напр., гормона)
    18) Fishery: formation, mining field
    21) Automation: production capacity
    23) Gold mining: entry
    24) Electrical engineering: yield (напр. электроэнергии)

    Универсальный русско-английский словарь > выработка

  • 16 байпас (в источнике бесперебойного питания)

    1. bypass
    2. by-pass

     

    байпас
    1. Режим работы источника бесперебойного питания (ИБП) в котором вход ИБП напрямую или через корректирующие и фильтрующие цепи соединен с выходом ИБП. В таком режиме ИБП практически не способен влиять на качество выходного напряжения. В режим байпаса ИБП переводят либо принудительно с панели управления, либо ИБП переходит в этот режим самостоятельно при перегрузке или неисправности.

    2. Часть схемы ИБП, обеспечивающая работу режима байпас.
    Различают электронный (статический байпас) и механической (сервисный байпас). Электронный байпас защищает нагрузку ИБП от перегрузки, а оборудование от отключения питания при аварии в ИБП. Механический байпас предназначен для отключения ИБП от сети при обслуживании без отключения защищаемого оборудования.
    [ http://www.radistr.ru/misc/document423.phtml]

    EN

    by-pass
    Functional UPS module that connects the load of an On-Line UPS directly to mains in case of overload or UPS failure.
    [ http://www.upsonnet.com/UPS-Glossary/]

    0423

    Байпас в ИБП с двойным преобразованием

     

    0424
    Схема байпаса

    Байпас является обязательным элементом ИБП двойного преобразования большой и средней мощности.
    Байпас предназначен для соединения выхода ИБП (т. е. нагрузки) с входом ИБП (т. е. с питающей сетью), минуя схему ИБП.
    Байпас представляет собой комбинированное электронно-механическое устрой­ство, состоящее из так называемого статического байпаса и ручного (механическо­го,т. е. контактного) байпаса.

    Статический байпас - это ключ из встречно-паралельно включенных тиристоров. Включение (переход в режим Байпас) и отключение ключа осуществляется автоматически от системы управления ИБП при возникновении перегрузки или при разряде батарей, а также при переходе ИБП в экономичный режим работы. При коммутации байпаса напряжение инвертора синхронизировано с напряжением на входе байпаса (т. е. с напряжением питающей сети), что позволяет переключать нагрузку с инвертора на байпас и обратно «без разрыва синусоиды».



    Используется также термин автоматический байпас.
    В некоторых случаях байпас применяют при первом включении оборудования, когда пусковая мощность нагрузки превышает мощность ИБП.

    Ручной (механический, т. е. контактный) байпас представляет собой контактный выключатель нагрузки, шунтирующий статический байпас. Он предназначен для вывода ИБП из работы со снятием напряжения с элементов ИБП. При включенном ручном байпасе питание нагрузки осуществляется через цепь «вход байпаса-ручной байпас-выход ИБП». Остальные элементы ИБП: выпрямитель, инвертор, аккумуляторная батарея (АБ), ста­тический байпас — на время включения ручного байпаса могут быть обесточены (отключены от сетевого питания и нагрузки) для ремонта, регулировок, осмотров и т. д.
    Об отключении АБ можно говорить с некоторой натяжкой, поскольку АБ в заряжен­ном состоянии является мощным источником постоянного напряжения, пред­ставляющим опасность для обслуживающего персонала. По классификации «Меж­отраслевых правил по охране труда (правила безопасности) при эксплуатации элек­троустановок» работы с АБ следует относить к виду работ с частичным снятием на­пряжения. При необходимости замены аккумуляторов АБ ИБП переводят на руч­ной байпас, специальным инструментом разделяют АБ на отдельные аккумуля­торы, после чего опасность поражения электрическим током устраняется.

    При работе в режиме Байпас ИБП не имеет возможно­сти обеспечивать бесперебойное питание потребителей. Такой режим должен сопровождаться административно-техническими мероприятиями для исключения нежелательных последствий для потребителей. Самая простая мера — проведение профилактических и ремонтных ра­бот в то время, когда потребители не работают.

    Таким образом байпас позволяет:

    • отключать ИБП от нагрузки на время проведения ремонта и регулировок, продолжая питать нагрузку от питающей сети, а поокончания ремонта вновь подключать нагрузку к ИБП,
    • переключать нагрузку с инвертора на байпас при возникновении перегрузок, ко­ротких замыканий на выходе ИБП, при разряде аккумуляторной батареи;
    • переключать нагрузку с инвертора на байпас при нормальном качестве электроэнергии в питаю­щей сети, что позволяет уменьшить потери электроэнергии в ИБП (экономичный режим работы).

    [ http://electromaster.ru/modules/myarticles/article.php?storyid=365 с изменениями, а также http://market.yandex.ru/faq.xml?CAT_ID=969705&hid=91082#Hc0m8v096s7a9itBy-pass]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > байпас (в источнике бесперебойного питания)

  • 17 фликер

    1. flicker

     

    фликер
    Субъективное восприятие человеком колебаний светового потока искусственных источников освещения, вызванных колебаниями напряжения в электрической сети, питающей эти источники.
    [ ГОСТ 13109-97]

    фликер
    Ощущение неустойчивости зрительного восприятия, вызванное световым источником, яркость или спектральный состав которого изменяются во времени.
    [ ГОСТ Р 51317.4.30-2008 (МЭК 61000-4-30:2008)]

    EN

    flicker
    impression of unsteadiness of visual sensation induced by a light stimulus whose luminance or spectral distribution fluctuates with time
    Source: 845-02-49
    [IEV number 161-08-13]

    flicker
    impression of unsteadiness of visual sensation induced by a light stimulus whose luminance or spectral distribution fluctuates with time
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    FR

    papillotement
    flicker

    impression d'instabilité de la sensation visuelle due à un stimulus lumineux dont la luminance ou la répartition spectrale fluctuent dans le temps
    Source: 845-02-49
    [IEV number 161-08-13]

    papillotement («flicker»)
    impression d’instabilité de la sensation visuelle due à un stimulus lumineux dont la luminance ou la répartition spectrale fluctue dans le temps
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    Тематики

    EN

    DE

    FR

    Смотри также

    3.7 фликер (flicker): Ощущение неустойчивости зрительного восприятия, вызванное световым источником, яркость или спектральный состав которого изменяются во времени.

    Источник: ГОСТ Р 51317.4.30-2008: Электрическая энергия. Совместимость технических средств электромагнитная. Методы измерений показателей качества электрической энергии оригинал документа

    Русско-английский словарь нормативно-технической терминологии > фликер

  • 18 выработка

    ж.
    1. ( производство) manufacture, making
    2. ( составление) elaboration, working-out, drawing-up
    3. ( продукция) output

    хороший выработки — of good* make; well-made

    5. чаще мн. горн. excavation, mine working

    Русско-английский словарь Смирнитского > выработка

  • 19 загрязнение электросети гармоническими составляющими

    1. harmonic disturbance

     

    загрязнение электросети гармоническими составляющими
    -


    Практически все современное электрическое оборудование имеет импульсные источники питания или какую-либо схему управления питанием, поэтому является нелинейной нагрузкой. Линейная же нагрузка встречается очень редко. Типичными примерами общеупотребительных линейных устройств являются обычные лампы накаливания без устройств регулировки яркости и нерегулируемые нагреватели. Современные и разрабатываемые стандарты не предусматривают жестких ограничений на загрязнение электросети гармоническими составляющими для цифрового оборудования, такого как персональные компьютеры. А это тот тип оборудования, который создает большое количество связанных с гармониками трудностей, наблюдаемых сегодня в промышленности и различных учреждениях. Частично из-за большого количества такого оборудования, частично из-за того, что создаваемые им гармоники в основном являются гармониками порядка 3N. Так как наблюдается устойчивый р ост загрязнения электросетей гармониками, то потребуются дополнительные капиталовложения в правильное проектирование электросетей, подбор соответствующего электротехнического оборудования и надлежащее техническое обслуживание. [Практическое руководство по качеству электроэнергии. Автор: Дэвид Чепмен, Ассоциация развития меди. Перевод: Харченко Н.Г. Информационный проект Леонардо Энерджи, Россия.]   Параллельные тексты EN-RU  

    In water installations, harmonics are mainly generated by Variable Speed Drives, Ozone generators and UV lamps, which should all be carefully managed.
    [Schneider Electric]

    Применение в электроустановках систем водоснабжения приводов с регулируемой частотой вращения, генераторов озона и УФ-ламп приводит к загрязнению электросети гармоническими составляющими, которые нужно тщательно отфильтровывать.
    [Интент]

    To ensure a good and proper operation of the electrical installation, the harmonic level must be taken into account in the selection of the power factor correction equipment.
    [Schneider Electric]

    Для обеспечения надлежащей работы электроустановки необходимо при выборе оборудования компенсации реактивной мощности учитывать степень загрязнения электросети гармониками.
    [Интент]

    Since the harmonics are caused by non-linear loads, an indicator for the magnitude of harmonics is the ratio of the total power of non-linear loads to the supply transformer rating.
    [Schneider Electric]

    Поскольку гармоники возникают при работе нелинейных нагрузок, то о степени загрязнения сети гармониками можно судить по отношению полной мощности нелинейных нагрузок к номинальной мощности силового трансформатора.
    [Интент]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > загрязнение электросети гармоническими составляющими

  • 20 источник бесперебойного питания

    1. UPS
    2. uninterruptible power systems
    3. uninterruptible power supply
    4. power protection
    5. no-break power supply
    6. battery backup
    7. battery back-up

     

    источник бесперебойного питания
    ИБП

    Сочетание преобразователей, переключателей и устройств хранения электроэнергии (например, аккумуляторных батарей), образующее систему электропитания для поддержания непрерывности питания нагрузки в случае отказа источника энергоснабжения.
    [ ГОСТ Р МЭК 62040-1-1-2009]

    источник бесперебойного питания
    ИБП

    Устройство, поддерживающее заданное качество выходного напряжения при наличии нарушения питающей сети за счет использования энергии аккумуляторных батарей (исчезновение напряжения, искажения формы, отклонения от диапазона входных значений и т. д.). ИБП с двойным преобразованием класса VFI-SS-111 обеспечивают защиту от любых нарушений питающей сети.
    [ http://www.radistr.ru/misc/document423.phtml с изменениями]

    источник бесперебойного питания
    UPS
    Автоматическое устройство, устанавливаемое между источником энергии и оборудованием, обеспечивающее питание оборудования за счет энергии аккумуляторных батарей при отключении основного электроснабжения, защищающее оборудование от колебаний напряжения и электромагнитных шумов.
    [РД 01.120.00-КТН-228-06]

    EN

    uninterruptible power supply
    UPS

    An Electronic device connected between the Utility Power and electric consumers, comprising generally of filters, Rectifier, Battery, DC/AC Inverter, Transfer Switch and associated circuits.
    The UPS is intended to provide clean undisturbed stabilized AC voltage, within strict amplitude and frequency limits, to protect the consumer from any Utility Power disturbances and irregularities, including outages for a limited time dictated by the capacity of the Battery Bank. The term UPS refers generally to AC Static systems, Other types include DC and Rotary UPS.
    [ http://www.upsonnet.com/UPS-Glossary/]

    Исходная базовая идея у всех ИБП одинакова и основана на использовании резервного питания от аккумуляторов. Если напряжение в электрической сети исчезло, необходимо достаточно быстро переключить нагрузку на питание от встроенного аккумулятора, и наоборот, если напряжение восстановилось, снова переключить на питание от сети.
    Время автономной работы от аккумулятора должно быть достаточным для безопасного завершения работы компьютера без потери информации.

    В настоящее время сложилась общепринятая классификация ИБП по двум основным показа­телям - мощности и типу ИБП.

    Классификация ИБП по мощности носит упрощенный характер и отражает в основном конструктивное исполнение ИБП:

    • ИБП малой мощности от 250 до 3000 ВА выпускаются в настольном или стоечном исполнении,
    • ИБП средней мощности от 3000 до 30 000 ВА обычно изготавливаются в напольном исполнении,
    • ИБП большой мощности от 40 до нескольких сотен кВА имеют напольное исполнение и размещаются в специальных электромашинных помещениях.

    Существуют две топологии ИБП:

    • off-line (резервные) ИБП,
    • on-­line ИБП.

    [ http://www.tcs.ru/reviews/?id=345 с изменениями]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > источник бесперебойного питания

См. также в других словарях:

  • качество электроэнергии — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN quality of electric energypower qualityquality of powerQP …   Справочник технического переводчика

  • качество электрической энергии — Степень соответствия параметров электрической энергии их установленным значениям. [ГОСТ 23875 88] качество электрической энергии КЭ Степень соответствия характеристик электрической энергии в данной точке электрической системы совокупности… …   Справочник технического переводчика

  • качество электрической энергии — Степень соответствия параметров электрической энергии их установленным значениям. [ГОСТ 23875 88] качество электрической энергии КЭ Степень соответствия характеристик электрической энергии в данной точке электрической системы совокупности… …   Справочник технического переводчика

  • Граница ответственности за качество электроэнергии — English: Responsibility border for quality of supply Пункт контроля качества электроэнергии, обычно совпадающий с границей раздела балансовой принадлежности сети, за поддержание качества электроэнергии в которой несет ответственность… …   Строительный словарь

  • Граница ответственности за качество электроэнергии — – пункт контроля качества электроэнергии, обычно совпадающий с границей раздела балансовой принадлежности сети, за поддержание качества электроэнергии в которой несет ответственность электроснабжающая организация. ГОСТ 23875 88 …   Коммерческая электроэнергетика. Словарь-справочник

  • Качество электрической энергии — Качество электрической энергии  степень соответствия параметров электрической энергии их установленным значениям[1]. В свою очередь, параметр электрической энергии  величина, количественно характеризующая какое либо свойство… …   Википедия

  • Качество электрической энергии — (КЭ) – степень соответствия параметров электрической энергии их установленным значениям. ГОСТ 23875 88. Требования к качеству электроэнергии устанавливаются в нормативных документах, договорах энергоснабжения, ТУ на присоединение, а также в иных… …   Коммерческая электроэнергетика. Словарь-справочник

  • Передача электроэнергии —         от электростанции к потребителям одна из важнейших задач энергетики. Электроэнергия передаётся преимущественно по воздушным линиям электропередачи (См. Линия электропередачи) (ЛЭП) переменного тока, хотя наблюдается тенденция ко всё более …   Большая советская энциклопедия

  • Электроэнергии качество —         совокупность свойств энергии электрического тока, определяющих режим работы электроприёмников (электродвигателей, нагревательных установок, осветительных приборов, радиоэлектронных устройств и др.). Показателями Э. к. являются: для сетей… …   Большая советская энциклопедия

  • ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения — Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… …   Словарь-справочник терминов нормативно-технической документации

  • Список стран по производству электроэнергии — Место Страна (регион) Производство электроэнергии, ГВт*ч год Год, примечания мир 19 894 777 2007[1] 1 …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»